Theory of Circumstellar Interaction: Dense mass loss and luminous SNe

Roger Chevalier

X-rays

Smith et al. 2007

Circumstellar interaction – normal case

CF

Circumstellar density ($\rho_w = D/r^2$)

D=Mdot/4πv_w WR star: 10⁻⁵ M_☉/yr, 1000 km/s D=5x10¹¹ Extreme RSG: 10⁻⁴ M_☉/yr, 10 km/s D=5x10¹⁴ Optical depth effects: 10⁻² M_☉/yr, 10 km/s D=5x10¹⁶ D_{*} is scaled to this value

 $\tau_{\rm w} \sim 17 \ {\rm D_{*}} \ ({\rm v_{sh}}/10,000 \ {\rm km/s})^{-1} ({\rm t}/10 \ {\rm day})^{-1}$

High density interaction

Optically thick dense shell

X-ray emission (radio absorbed)

X-ray photoionized region Wind possibly optically thick

At high densities, the hard, forward shock X-ray emission dominates

Stoll et al. 2011

Broad Hα formed by electron scattering in the wind (Chugai 2001 on SN 1998S) Requires Thomson optical depth of a few in the wind

Radiation dominated shock

Optical depth through the transition zone $\tau \sim c/v_{sh}$

Weaver 76

Supernova in dense wind ($\rho_w = D/r^2$ to R_w)

- $\Box \tau_w < 1$
 - Shock breakout unaffected
 - May have radiation from interaction
- $\Box 1 < \tau_w < c/v_{sh}$
 - Shock breakout energy same, longer time
 - Interaction power, broad line wings
- $\Box \tau_{w} > c/v_{sh}$
 - Radiation dominated shock propagates into wind
 - Radiation breakout when $R_{sh} = R_d = \kappa D v_{sh}/c$, characteristic diffusion radius in the wind
 - Viscous shock at larger radii

Chevalier & Irwin 2011

$\mathbf{R}_{w} > \mathbf{R}_{d}$

Rise to max light $\sim R_d / v_{sh}$ Duration of the rise also $\sim R_{\rm d} / v_{\rm sh}$ Outer parts of the opaque medium are extended and at low velocity at the time of peak luminosity A dense shell forms -

continued interaction with the dense mass loss Rise to max light R_w / v_{sh} Duration of the rise is $R_{w}^{2}/V_{sh}R_{d}$ Outer parts of the opaque medium are not extended and are accelerated to high velocity by radiation pressure A dense shell forms but does not affect the light curve near maximum

Chevalier & Irwin 2011

Simulation of Type IIP in a dense CSM (Moriya et al. 2011)

SN 2006gy: R_w>**R**_d

Smith et al. 2010

SN 2010gx and related objects: $R_w < R_d$

Pastorello et al. 2010

SN 2006jc – Type Ib

Observed to erupt in 2004
Interaction seen in X-ray/radio/optical/IR
M ~ 0.01 M_☉

Immler et al. 2008

Optical/uv from young Ic - GRB

 Simple model for diffusion wave moving into power law density profile

SN 2006aj Campana et al. 06

GRB 101225^rA^{uecy}

Stritzinger et al. 02

Thone et al. 2011

Also, Balberg & Loeb (2011) suggest a radiation dominated shock propagates into wind in SN2008D

High density interaction

Optically thick dense shell

X-ray emission (radio absorbed)

X-ray photoionized region

At high densities, the hard, forward shock X-ray emission dominates

SN 2010jl, Dec 2010 Chandra X-ray

 $N_{\rm H} \sim 3e23 \text{ cm}^{-2}$ kT ~ 75 keV 6.3e41 ergs/s (0.2-10 keV unabs.)

poonam 1-Mar-2011 13:55

P. Chandra,...

Smith et al. 2007

SN2006gy X-rays Need full absorption $1.5 \ge 10^{39} \text{ erg/s}$ soft (upper limit)

Final comments

Extent of dense mass loss

 10¹⁴ cm
 10¹⁵ cm
 10¹⁶ cm
 10¹⁷ cm

 SN 2006aj
 SN 2010gx
 SN 2006gy
 SN IIn

 0.3 yr
 300 yr

 $(if v_w = 100 \text{ km/s})$

Question of coincidenceBinary?