The gravitational wave signal of core collapse supernovae

Ewald Müller Max-Planck-Institut für Astrophysik

in collaboration with

Hans-Thomas Janka

&

Harald Dimmelmeier, Andreas Marek, Bernhard Müller, Martin Obergaulinger, Christian Ott, Leonhard Scheck, Annop Wongwathanarat

supported by

SFB/TRANSREGIO 7 wwwsfb.tpi.uni-jena.de GRAVITATIONAL WAVE ASTRONOMY

GARCHING HANNOVER JENA POTSDAM TÜBINGEN

Origin and Structure of the Universe The Cluster of Excellence for Fundamental Physics

www.universe-cluster.de

GEO AURIGA VIRGO NAUTILUS

TAMA

LIGO

0

NIOBE

LIGO-Livingston

Gravitational wave detectors: interferometer

noise sources complicate measurement

<u>Gravitational waves</u> (Einstein quadrupole formula)

$$h_{jk} = \frac{2G}{c^4} \frac{1}{R} \frac{d^2 Q_{jk}}{dt^2} \sim \frac{R_s}{R} \frac{v^2}{c^2}$$

 $R_s=1 \text{ km}$, v/c=0.1, R=10kpc ---> $h \sim 10^{-20}$ *

time-dependent mass-energy quadrupole moment in core collapse supernovae due to

- <u>convection</u> in proto-neutron star
 - convection in neutrino heated hot bubble
 - anisotropic neutrino emission
 - any other non-radial instability (e.g. SASI, NS g-modes)

generically produced by <u>any</u> CCSN

and due to rotation and magnetic fields

* [measuring the distance earth-sun with an accuracy of 1 nm]

Towards predictive theoretical GW signals from CSSN: core bounce

post-bounce

full GR	Shibata & Sekiguchi '04, '05 2D/3D, confirmation of CFC Shibata '03 cartoon method	Ott et al. '07 $Y_e(\rho)$ from 1D GR sim.	MONTY PATHON WIE HOLY GRAVE NOW BRITIS LOUGHAN AN GRO
CFC-GR hydro & gravity	Dimmelmeier, Font & Müller '02 parameter study	Dimmelmeier et al. '07, '08 $Y_e(\rho)$ from 1D GR sim.	Müller,B, Janka & Marek '11 2D models
Newtonian hydro & approx. GR gravity	Müller, B, Dimmelmeier & Müller '08 modified potential for rapid rotators Murphy, Ott & Burrows '09	Yakunin et al. '10 2D exploding models Scheidegger et al. '08, '10 3D MHD parameter study	Müller, Janka & Wongwathanarat '11 3D parametrized models Marek, Janka & Müller '09 2D exploding models Müller et al. '04 2D, flow & v contrib.
Newtonian hydro & gravity	Ott et al. '05 low T/W instability Rampp, Ruffert & Müller '98 3D simulations Zwerger & Müller '97 parameter study	Kotake et al. '07, '09, '11 leakage scheme, 3DOtt et al. '04, '06, '07 parameter study, g-modesFryer, Holz & Hughes '04 3D SPH, initial perturb.Müller & Janka '97 PNS & prompt convectionBurrows & Hayes '96 anisotropic v-emission	
	polytropes, simplified EOS	microphysical EOS approx. v-transport	microphysical EOS Boltzmann v-transport

GW signals from core bounce

GR models with microphysical EoS and deleptonization ---> generic GW signals

<u>low frequency GW signals</u> (i.e. multiple centrifugal bounces) are <u>suppressed</u> in simulations including GR <u>and</u> a microphysical EOS! (Dimmelmeier & Ott et al., 2007, 2008)

Suppresion of centrifugal bounce by relativistic gravity

Newtonian study of the collapse of rotating polytropes (Zwerger & Mueller, '97) repeated in relativistic gravity (Dimmelmeier, Font & Muller, '02; Dimmelmeier et al., 05; Cerda et al., '05; Shibata & Segikuchi, '05, '06)

relativistics effects: deeper potential --> larger bounce densities, more compact PNS

less multiple centrifugal bounces (less type II GW signals)

The Quality of the Conformal Flatness Approximation

Comparison of results obtained using Method CFC and full general relativity proves: [Shibata and Sekiguchi, PRD, 2005; Dimmelmeier et al., Proc. Albert Einstein's Century Conference, Paris, 2006; Ott et al., PRL, submitted]

CFC is excellent approximation of full general relativity for supernova core collapse!

Compared to differences between numerical codes and coordinate choices:

Differences between full general relativity and Method CFC are typically smaller!

Sub-dividing simulations of core collapse supernovae

GW signature of CCSN

past studies: "early evolution", simplified microphysics, rapidly rotating parametrized initial models (e.g., Zwerger & Müller '97)

CCSN "explosion phase" with models including detailed microphysics and *v*-transport (Müller et al. '04, Marek et al. '08, Müller et al., in prep.)

v-heating, onset of v-driven convection, and growth of SASI instability (several 100 milliseconds)

core collapse, core bounce, and early post-bounce evolution (few 10 milliseconds)

time

GW signature of a <u>non-rotating</u> 11.2 M_{sr} star

Models with detailed microphysics, transport physics, and effective relativistic gravitational potential (Müller, Rampp, Buras, Janka & Shoemaker '04)

GW signature of a slowly <u>rotating</u> 15 M_a star

Müller, Rampp, Buras, Janka & Shoemaker (2004)

Same stellar progenitor, same input & transport physics / numerics

(Marek, Janka & Müller, 2009)

2D models, various progenitors GW signals qualitatively similar, distinct phases

",tail phase" associated with (prolate) expanding shock \rightarrow GW amplitudes show positive slope Yakunin et al. 2010

RED: signal from region inside R<30km

Green: signal from region R>30km

3D MHD models with parametrized neutrino treatment

strong dependence of GW amplitudes on post-bounce v-handling R3E1AC 20 Scheidegger et al. 2010 15 10 A_{+,x,pol} [cm] R3E1AC, 150 -5 Â₊, 100 -10 50 -15 ²t-t_b [s] 0.06 A_{+,x,pol} [cm] 0.01 0.02 0.04 0.05 0 0 -50 with ν -cooling ---> -100 amplitudes increase by -150a factor 5-10 0.15 0 0.05 0.1 t–t_b [s]

Sub-dividing simulations of core collapse supernovae

3D simulations using an axis-free overset grid in sphericl polar coordinates: the Yin-Yang grid *Wongwathanarat, Hammer, & Müller, 2010*

- reduces CFL timestep restriction (~ order of magnitude)
- avoids axes artefacts

angular variation of v-energy flux density

shock radius

Parametrized 3D models of neutrino-driven core collapse supernovae Müller, Janka, Wongwathanarat (2011))

GW amplitudes due to aspherical flow & corresponding spectograms $dE_{_M}/dv$

total GW amplitudes (including v)

GW amplitudes of parametrized 3D models due to anisotropic mass flow and neutrino emission

Müller, Janka & Wongwathanarat (2011)

GW signature of parametrized 3D models

(normalized) total amplitude spectrograms

Müller, Janka & Wongwathanarat (2011)

3D parametrized models: influence of rotation rotation reduces stochasticity of GW signal from anisotropic neutrino emission

Kotake et al. 2011

Snapshot (49 ms post-bounce) of a model with a strong initial B-field & rapid differential rotation --> collimated outflow

Gravitational wave quadrupole amplitude: TOV (solid line) vs Newtonian (dashed line) rotating models: (A3B3G3-D3M1x; Obergaulinger, Aloy & Müller '06)

10¹⁰ Gauss

10¹³ Gauss

Conclusions from MHD studies

- weak (realistic!) initial fields (B < 10^{11} G) do neither change collapse dynamics nor resulting GW signal
- strong initial fields (B $\geq 10^{12}$ G)
 - ---> slow down core efficiently (even retrograde rotation occurs!)
 - qualitatively different dynamical evolution & GW signal
 - highly bipolar, mildly relativistic outflows
- shape of GW signal reflects dynamical behavior of the model (in particular the collimated outflow)

Are strong initial B-fields necessary?

compressional amplification

- feeds off kinetic energy of infall
- amplifies field energy by a factor of 100 ... 1000 during collapse
- works irrespective of field strength and geometry

winding by differential rotation

- creates & amplifies toroidal field component
- energy source: differential rotation
- requires poloidal seed field
- linear in time time scale set by rotational period

turbulent dynamo

• turbulence excited by

shear flow (differential rotation)

unstable stratification

• genuinely 3D effect

Obergaulinger, Cerda & Müller '08

The magneto-rotational instability

- main & original application: accretion disks (Balbus & Hawley 1991ff; based on Velikhov 1959 & Chandrasekhar 1960)
- energy source is differential rotation
- local linear instability with exponential growth

Semi-global simulations Obergaulinger, Cerda & Müller '08

- MRI grows rapidly (within a fraction of a millisecond)
- saturation depends on the field geometry, the grid, and the dimensionality
- saturation level set by rotational equipartition (~ 10¹⁵ Gauss)

GW signal of core collapse supernovae: where do we stand in 2011?

- simplified models miss important physics (convection, SASI, anisotropic neutrino emission)
- intensively studied bounce signal is only a prelude to the GW emission in CCSN
- non-spherical (post bounce) flow occurs in <u>every</u> CCSN producing a GW signal dominated by a low-frequency v-contribution
- only the rare galactic CCSN events seem to be detectable (in the local group with 3rd generation detectors)
- effects of relativistic gravity important for dynamics, but can be well modelled by means of an effective relativistic potential (for not too extreme models)
- CFC is an excellent approximation of GR for core collapse
- only very strong (≥ 10¹² Gauss) initial B-fields modify the dynamics and hence the GW (bounce) signal

What could the signal tell us?

- the time of bounce, if core is rotating (delay of neutrino signal relative to start of GW signal provides neutrino mass estimate)
- whether the explosion was globally asymmetric (tail signal)
- observational confirmation of SASI
- information about nuclear equation of state
- whether CCSN explosions involve strong ($\geq 10^{14}$ Gauss) magnetic fields
- unexpected new insights into the explosion mechanism