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Gravitational wave detectors: interferometer

   noise sources complicate measurement



    



                                                                                    
Gravitational waves                                                                          
  (Einstein quadrupole formula)                                                                      

           

         time-dependent mass-energy quadrupole moment                    
      in core collapse supernovae due to   

              -  convection in proto-neutron star                                                
              -  convection in neutrino heated hot bubble                                
                -  anisotropic neutrino emission                                                
                 -  any other non-radial instability (e.g. SASI, NS g-modes)      
                                              

    

            and due to  rotation and magnetic fields

                               * [ measuring the distance earth-sun with an accuracy of 1 nm ]
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• Rs=1 km ,  v/c=0.1 ,  R=10kpc  --->   h ~ 10-20  *

 generically produced by any CCSN
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●                                                                                                     
GW signals from core bounce

GR models with microphysical EoS and deleptonization                
     --->  generic GW signals                                                                    
                                                                       

low frequency GW signals (i.e. multiple centrifugal bounces) are suppressed 
in simulations including GR and a microphysical EOS!                                 
  (Dimmelmeier & Ott  et al., 2007, 2008)  
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●                                                                                                  
Suppresion of centrifugal bounce by relativistic gravity

●   Newtonian study of the collapse of rotating polytropes (Zwerger & Mueller, '97) 
  repeated in relativistic gravity                                                                                    
     (Dimmelmeier, Font & Muller, '02; Dimmelmeier et al., 05; Cerda et al., '05;             
       Shibata & Segikuchi, '05, '06)      

●   relativistics effects: deeper potential -->  larger bounce densities, more           
                                                                   compact PNS  

●                                  less multiple centrifugal bounces (less type II GW signals)
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Sub-dividing simulations of core collapse supernovae                   
            

full-fledged 2D -hydro simulations 
until a few 100 msec after bounce 
[0 km < r < 104 km]
 (various research groups)

2D/3D hydro simulations 
with simplified -transport 
until ~1s post bounce
[(32  15) km < r < 2 10→ 4 km]
    (Scheck et al. '06)

2D/3D hydro simulations without
-transport until a few hours
post bounce
[103 km < r < 3 107 km]
 (Kifonidis et al., Hammer et  al., 
  Wongwathanarat et al. 

Step 1

Step 2

Step 3

GWs 



   

core collapse, core bounce, and                                                     -heating, onset of -driven convection,  
   early post-bounce evolution                                                                 and growth of SASI instability 
         (few 10 milliseconds)                                                                        (several 100 milliseconds) 
                                                                                                                                                                       time

past studies: ''early evolution'',
simplified microphysics, rapidly
rotating parametrized initial models  
   (e.g., Zwerger & Müller '97)  

  GW signal 
  including
  anisotropic 
 -emission

CCSN ''explosion phase'' with models including 
detailed microphysics and -transport                        
  (Müller et al. '04,  Marek et al. '08, Müller et al., in prep.)  

GW signature of CCSN

GW signal 
from prompt 
post-bounce
convection
(not generic!)



                                                                                                                   
GW signature of a non-rotating 11.2 M

sol
 star

                                                                                                                                                   
                                                                                               

                                                                                              

                                                                                                

Models with detailed microphysics, transport physics, and effective 
relativistic gravitational potential  (Müller, Rampp, Buras, Janka & Shoemaker '04)



                                                                                                               
GW signature of a slowly rotating 15 M

sol
 star

                                                                                     

                                                                                              

                                                                                                

bounce signal

Müller, Rampp, Buras, Janka & Shoemaker (2004)



    
Same stellar progenitor, same input & transport physics / numerics  

 (Marek, 

  Janka & 

  Müller, 

  2009)



                                                        2D models, various progenitors
    GW signals qualitatively similar, distinct phases
    
   „tail phase“ associated with (prolate) expanding shock
      → GW amplitudes show positive slope        Yakunin et al. 2010

 RED: signal from region inside R<30km         Green: signal from region R>30km 



                                                        
3D MHD models with parametrized neutrino treatment
   
strong dependence of GW amplitudes on post-bounce -handling 

                                                          Scheidegger et al. 2010 

with -cooling --->

amplitudes  increase by 
a factor 5-10

                                         



                                                                                                     

             

                

                                                                             

          

                             

Sub-dividing simulations of core collapse supernovae                   
            

full-fledged 2D -hydro simulations 
until a few 100 msec after bounce 
[0 km < r < 104 km]
 (various research groups)

2D/3D hydro simulations 
with simplified -transport 
until ~1s post bounce
[(32  15) km < r < 2 10→ 4 km]
    (Scheck et al. '06)

2D/3D hydro simulations without
-transport until a few hours
post bounce
[103 km < r < 3 107 km]
 (Kifonidis et al., Hammer et  al., 
  Wongwathanarat et al. 
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   3D simulations using an axis-free overset grid in
sphericl polar coordinates: the Yin-Yang grid

Wongwathanarat, Hammer, & Müller, 2010

- reduces CFL timestep  restriction (~ order of magnitude)

- avoids axes artefacts 



    
Post-bounce evolutionary phases of neutrino-driven core collapse supernovae
    Müller, Janka, Wongwathanarat (2011), see also Murphy, Ott, Burrows (2009)
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quasi-spherical shock expansion
 shock formation and expansion

Post-bounce evolutionary phases of neutrino-driven core collapse supernovae
    Müller, Janka, Wongwathanarat (2011), see also Murphy, Ott, Burrows (2009)
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quasi-spherical shock expansion
 shock formation and expansion

pre-explosion phase
 growth of post-shock convection
 and of the SASI

Post-bounce evolutionary phases of neutrino-driven core collapse supernovae
    Müller, Janka, Wongwathanarat (2011), see also Murphy, Ott, Burrows (2009)
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quasi-spherical shock expansion
 shock formation and expansion

pre-explosion phase
 growth of post-shock convection
 and of the SASI

post-explosion accretion phase
 shock revival, shock acceleration, 
 ongoing mass accretionn

Post-bounce evolutionary phases of neutrino-driven core collapse supernovae
    Müller, Janka, Wongwathanarat (2011), see also Murphy, Ott, Burrows (2009)
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quasi-spherical shock expansion
 shock formation and expansion

pre-explosion phase
 growth of post-shock convection
 and of the SASI

post-explosion accretion phase
 shock revival, shock acceleration, 
 ongoing mass accretionn

post-accretion phase
 end of mass accretion, 
 onset of a nearly spherical 
 neutrino-driven wind

Post-bounce evolutionary phases of neutrino-driven core collapse supernovae
    Müller, Janka, Wongwathanarat (2011), see also Murphy, Ott, Burrows (2009)
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GW amplitudes due to aspherical flow                            total GW amplitudes (including ) 
  &  corresponding spectograms dE

M 
/d 

Parametrized 3D models of neutrino-driven core collapse supernovae
    Müller, Janka, Wongwathanarat (2011))

  h = 310  - 2 2  for R=10kpc



                                                                                                               
GW amplitudes of parametrized 3D models due to anisotropic mass 
flow and neutrino emission  

                                                                                     

                                                                                              

                                                                                                

Müller, Janka & Wongwathanarat (2011)

  h = 310  - 2 2  for R=10kpc
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   (normalized) total amplitude spectrogram



                                                                                                               
GW signature of parametrized 3D models 

                                                                                     

                                                                                              

                                                                                                

Müller, Janka & Wongwathanarat (2011)

 N20-2

observer angle dependent wave amplitudes                       (normalized) total amplitude spectrograms



                                                        3D parametrized models: influence of rotation
    rotation reduces stochasticity of GW signal 
    from anisotropic neutrino emission                      Kotake et al. 2011
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●                                                                                                           
      Snapshot (49 ms post-bounce) of a model with a strong initial             
       B-field & rapid differential rotation --> collimated outflow                   
                                                                      

●                                                                          (Obergaulinger, Aloy &             
                                                                                          Müller 2006)  

●

●                                                                         gas & magnetic pressure

●

●

●

●

●                                                                         velocity & final velocity      
                                                                           (total energy -->                     
                                                                                                           kinetic energy)
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●                                                                                             
Gravitational wave quadrupole amplitude:                                       
  TOV (solid line) vs Newtonian (dashed line) rotating models:               
   (A3B3G3-D3M1x;  Obergaulinger, Aloy & Müller '06) 

●                                                                                                                      
                                      

●

●

●

●

●

●

●

●

●                 101 0  Gauss                             101 3  Gauss 



●                                                                                                

● Conclusions from MHD studies 
●

●    -  weak (realistic!) initial fields (B < 1011 G) do neither change                         
       collapse dynamics nor resulting GW signal  

●

●    -  strong initial fields (B ≥ 101 2 G)                                                                     

●          --->   -  slow down core efficiently  (even retrograde rotation occurs!)            

●                   -  qualitatively different dynamical evolution & GW signal                 

●                   -  highly bipolar, mildly relativistic outflows

●

●    -  shape of GW signal reflects dynamical behavior of the model                      
        (in particular the collimated outflow)                                              

●           



13. III. 2008 MRI in core-collapse supernovae

                                                                                                     

             

                               

         

      

                                                                      

          

                             

Are strong initial B-fields necessary?

compressional amplification 

● feeds off kinetic energy of infall

● amplifies field energy by a factor of     
100 … 1000 during collapse

● works irrespective of field strength      
and geometry

winding by differential rotation 

● creates & amplifies toroidal field      
component

● energy source: differential rotation

● requires poloidal seed field

● linear in time                                       
time scale set by  rotational period



13. III. 2008 MRI in core-collapse supernovae

                                                                                                     

             

                               

         

      

                                                                      

          

                             

turbulent dynamo

● turbulence excited by          
                                            
  shear flow (differential          
                     rotation)             
                                               
  unstable stratification  

● genuinely 3D effect

 Obergaulinger, Cerda & Müller '08 



13. III. 2008 MRI in core-collapse supernovae

●                                                                                                
●      

● main & original application: accretion disks                                  
  (Balbus & Hawley 1991ff; based on Velikhov 1959 & Chandrasekhar 1960)

● energy source is differential rotation

● local linear instability with exponential growth

The magneto-rotational instability

● MRI grows rapidly (within a fraction of a millisecond)                    

● saturation depends on the field geometry, the grid, and the 
dimensionality                                   

● saturation level set by rotational equipartition (~ 1015 Gauss)    

Semi-global simulations
 Obergaulinger, Cerda & Müller '08 



                                                        
GW signal of core collapse supernovae:                                     

where do we stand in 2011?                                                               
 

 - simplified models miss important physics                                                                       
(convection, SASI, anisotropic neutrino emission)

 -  intensively studied bounce signal is only a prelude to the GW emission in CCSN 

 -  non-spherical (post bounce) flow occurs in every CCSN producing a GW signal 
dominated by a low-frequency -contribution

 -  only the rare galactic CCSN events seem to be detectable                                           
  (in the local group with 3rd generation detectors)             

                                                                                                                                

 -  effects of relativistic gravity important for dynamics, but can be well modelled         
by  means of an effective relativistic potential  (for not too extreme models) 

 -  CFC is an excellent approximation of GR for core collapse    

 -  only very strong (≥ 101 2 Gauss) initial B-fields modify the dynamics and                 
hence the GW (bounce) signal  



                                                        
What could the signal tell us?                                                              

                              

 -  the time of bounce, if core is rotating                                                                             
   (delay of neutrino signal relative to start of GW signal                                                             
      provides neutrino mass estimate)

  -  whether the explosion was globally asymmetric (tail signal) 

  -  observational confirmation of SASI   

  -  information about nuclear equation of state  

  

  -  whether CCSN explosions involve strong (≥ 101 4 Gauss) magnetic fields                   
                                                                                                                           

 -  unexpected new insights into the explosion mechanism  
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